If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(625)^-x=(1/125)^3x
We move all terms to the left:
(625)^-x-((1/125)^3x)=0
Domain of the equation: 125)^3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-x-((+1/125)^3x)+625^=0
We add all the numbers together, and all the variables
-1x-((+1/125)^3x)=0
We multiply all the terms by the denominator
-1x*125)^3x)-((+1=0
Wy multiply elements
-125x^2+1=0
a = -125; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-125)·1
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{5}}{2*-125}=\frac{0-10\sqrt{5}}{-250} =-\frac{10\sqrt{5}}{-250} =-\frac{\sqrt{5}}{-25} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{5}}{2*-125}=\frac{0+10\sqrt{5}}{-250} =\frac{10\sqrt{5}}{-250} =\frac{\sqrt{5}}{-25} $
| 1+7a=-6 | | 6(1+8x)=342 | | 6+2r=-28 | | 4(5x-4)=144 | | 8-p=18 | | 625^-x=(1/125)^3x | | 19x+(-5)=90 | | 4+7n=-87 | | 6(x+3)/4=12 | | 55=4n-1 | | -180=3p-6(6p+8) | | 4x=42+2x | | 19x+(-5)=909 | | -5+3n=-35 | | 1.57=z/2-1. | | 3(f-10)=-10 | | 35+40+x=180 | | -10(s+4)=27 | | t/3+4.07=5.07 | | -20=-10-2g | | 2(-4x-6=-36 | | j/2+7=10 | | 1.4q-4.2-1.2q=-0.8-4.7 | | 10y-6y=10 | | 8k=6(3k+5) | | -4+4b=0 | | -7.62+2q=5.98 | | 9-6(x+11)=-129 | | w/2+6=9.04 | | -5+2v=15 | | 20-2r=4 | | 4p-12=26 |